
Abstract. A new method of combinatorial enumeration
is presented. The subduction of Q-conjugacy represen-
tations gives a characteristic subduction table and a
characteristic monomial table. A cycle index is de®ned
on the basis of such monomials and used for combina-
torial enumeration of isomers.

Key words: Q-conjugacy character table ± Characteristic
subduction table ± Characteristic monomial table ±
isomer enumeration

1 Introduction

Group-theoretical problems in chemistry have mainly
been discussed by means of linear representations that
are analysed in terms of irreducible representations [1].
Thus, approaches using irreducible characters are famil-
iar to most chemists, where character tables play an
important role as tools of such analysis [2±9]. In
contrast, such problems as combinatorial enumeration
of isomers have been investigated in the light of
permutation representations and coset representations
[10±22]. In the latter type of approaches, marks and
mark tables are used as versatile tools [19].

A series of articles has been devoted to integrating the
two types of approaches [23, 24]. Thus, Q-conjugacy
character tables derived from character tables in the ®rst
type of approach have been shown to be closely related
to markaracter tables derived from mark tables in the
second type of approach [25]. As a result, there is the
possibility of applying the ®rst approach to combinato-
rial enumeration which was originally unrelated. Hence,
the aim of the present paper is to develop a new method
of combinatorial enumeration on the basis of the ®rst
approach, in which characteristic subduction tables and
characteristic monomial tables are proposed as versatile
tools.

2 Characteristic subductions and characteristic monomials

2.1 Markaracters as rational characters

A markaracter that contains non-negative integers as
elements has been shown in Eqs. (69) and (70) of Ref.
[24] to be a linear combination of dominant mar-
karacters (based on permutation representations).

On the other hand, a markaracter that contains in-
tegers as elements has been recognized as a rational
character, which is a linear combination of characters
induced by characters of cyclic subgroups in the light of
Artin's theorem [1]. Although the latter characters are
based on linear representations, they are equivalent to
the dominant markaracters.

In both cases, the coe�cients of the linear combina-
tions are shown to be rational numbers. Thus, the for-
mulation described in Sect. 3.3 in Ref. [24] can be
applied to both of the cases, in which a markaracter
table eM � �mij� (or its inverse eMÿ1 � �mji�) is a key to

calculate such coe�cients. Moreover, the sum of each

row of eMÿ1, i.e.
Nj �

Xs

i�1
mji ; �1�

has a signi®cant role in combinatorial enumeration. The
sum Nj is equal to jKjj=jGj, where each jKjj denotes the
size of the dominant class Kj corresponding to the
subgroup Gj.

The subduction of each dominant representation
G�=Gi� into each subgroup (Gj) is regarded as a linear
combination of dominant representations of Gj. There-
by, the coe�cient b�ij�k of the linear combination is cal-
culated using an inverse markaracter table for the
subgroup Gj, as shown in Eq. (48) of Ref. [24]:

G�=Gi� # Gj �
Xr

k�1
b�ij�k Gj�=G�j�k � : �2�
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These data are collected to form a dominant subduction
table for G.

Let us now consider a dummy variable sdjk , the sub-
script of which is the size of each orbit. Then we de®ne a
dominant unit subduced cycle index (USCI) as follows:

Z�G�=Gi� # Gj; sdjk � �
Yr

k�1
s
b�ij�k
djk

; �3�

where djk � jGjj=jG�j�k j. These data are collected to form
a dominant USCI table for G.

2.1. Example 1

Let us examine the point group T of order 12. The
matrix eMT denotes the markaracter table of T [24],
which is obtained from the corresponding mark table
(Appendix A in Ref. [19]) by collecting the terms
associated with a non-redundant set of cyclic subgroups.

eMT �
1A0@

# C1 # C2 # C3

T�=C1� 12 0 0
T�=C2� 6 2 0
T�=C3� 4 0 1

�4�

The matrix eMÿ1T denotes the inverse matrix of eMT

[24], which is calculated directly from eMT or alterna-
tively obtained from the inverse mark table (Appendix B
in Ref. [19]). The sum (Nj) of each row is shown after
dotted lines:

eMÿ1T � 1
12 0 0
ÿ1
4

1
2 0

ÿ1
3 0 1

0@ 1A Nj

� � � 1
12� � � 1
4� � � 2
3

: �5�

The subduction of each dominant representation of T
is calculated by extracting a dominant subduction table
from the markaracter table of eMT. For example, the
subduction into C2 uses the columns # C1 and # C2

of eMT to form a 3� 2 matrix (a dominant subduction
table) as shown in Eq. (6):

1CCA
0BB@
# C1 # C2

T�=C1� 12 0

T�=C2� 6 2

T�=C3� 4 0

�
eMÿ1C2

1
2 0

ÿ1
2 1

 ! �
1CCA

0BB@
# C1 # C2

6 0

2 2

2 0

: �6�

The resulting matrix is multiplied by eMÿ1C2
(the inverse

of the markaracter table for C2) to form a 3� 2 matrix,
in which the elements of each row represent the multi-
plicities of the dominant representations of C2 for the
corresponding dominant representation of T. For ex-

ample, the second row of the resulting matrix of Eq. (6)
represents

T�=C2� # C2 � 2C2�=C1� � 2C2�=C2� ; �7�
which corresponds to Eq. (2) applied to the present case.
These results are collected to form Table 1 as a dominant
subduction table for T.

Since the orbits corresponding to the right-hand side
of Eq. (7) have the sizes jC2j=jC1j � 2 and jC2j=jC2j � 1,
we use respective dummy variables s2 and s1. Thereby,
we obtain a dominant USCI for T�=C2� # C2, i.e. s21s

2
2, in

which the powers are the coe�cients appearing in Eq.
(7). Thus, the data collected in Table 1 give the corre-
sponding dominant USCIs, which are listed in Table 2 as
a dominant USCI table for T.

The sums listed in the last side of Eq. (5) are shown in
the bottom row of this table.

2.2 Markaracters as matured characters

By means of the concept of Q-conjugacy characters [25],
a markaracter that contains integers as elements (i.e. a
matured character [25]) is concluded to be a linear
combination of Q-conjugacy characters, in which the
coe�cients of the linear combination are integers [25].
Each of Q-conjugacy characters bh` (` � 1; 2; . . . ; s) can
be regarded as a markaracter (a rational character).
Hence, we obtain the following equation to describe the
present case [25]:

bh` �Xs

i�1
a`iG�=Gi� �` � 1; 2; . . . ; s�; �8�

where the symbol G�=Gi� is used in order to designate
the dominant markaracter (as a row vector) correspond-
ing to the coset representation G�=Gi� for the sake of
simplicity. Although the same symbol is used, no
confusions occur according to contexts.

Let us now consider the subduction of Q-conjugacy
representation bH` into Gj, which is associated with the
subduction of the Q-conjugacy character bh` into Gj. By
starting from Eq. (8) and using Eq. (2), we have

Table 1. Dominant subduction table for T

¯ C1 ¯ C2 ¯ C3

T(/C1) 12C1(/C1) 6C2(/C1) 4C3(/C1)
T(/C2) 6C1(/C1) 2C2(/C1) + 2C2(/C2) 2C3(/C1)
T(/C2) 4C1(/C1) 2C2(/C1) C3(/C1) + C3(/C3)

Table 2. Dominant USCI table for T

¯C1 ¯C2 ¯C3

T(/C1) s121 s22 s43
T(/C2) s61 s21s

2
2 s23

T(/C2) s41 s22 s1s3
Nj

1
12

1
4

2
3
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bh` # Gj �
Xs

i�1
a`iG�=Gi� # Gj

�
Xs

i�1
a`i
Xr

k�1
b�ij�k Gj�=G�j�k �

�
Xr

k�1

Xs

i�1
a`ib

�ij�
k

 !
Gj�=G�j�k �

�
Xr

k�1
v�j�`k Gj�=G�j�k � �9�

for ` � 1; 2; . . . ; s, where the last side is obtained by
placing

v�j�`k �
Xs

i�1
a`ib

�ij�
k : �10�

The resulting data are collected to give a characteristic
subduction table for G. Note that the value of Eq. (10)
becomes independent of Gi. Each value v�j�`k is presumed
to be an integer to our knowledge, though it remains to
be proved in the future. It should be noted that the
coe�cients v�j�`r of every one-membered orbit (governed

by Gj�=G�j�r � � Gj�=Gj�) are collected to give a Q-

conjugacy character table.
Let us now consider a dummy variable sdjk , the sub-

script of which is the size of each orbit. Then, we de®ne
a monomial by the following equation. We call this
monomial a characteristic monomial.

Z�bh` # Gj; sdjk� �
Yr

k�1
s
Ps

i�1 a`ib
�ij�
k

djk
�
Yr

k�1
s
v�j�
`k

djk
; �11�

where djk � jGjj=jG�j�k j. The resulting data are collected
to give a characteristic monomial table for G. It
should be noted that the collection of the powers of
every s1 variable gives the original Q-conjugacy char-
acter table.

2.2.1. Example 2

Let us next examine the Q-conjugacy character table of
T, which is constructed from the character table of T
[25]. The Q-conjugacy character table is expressed as a
matrix form:

DT �
1A0@

# C1 # C2 # C3

A 1 1 1
E 2 2 ÿ1
T 3 ÿ1 0

: �12�

The Q-conjugacy character appearing in each row of
DT is regarded as a markaracter (rational character),
which is expressed by a linear combination of dominant

markaracters. The coe�cients of the linear combination
are calculated by DT

eMÿ1T as follows:

DT
eMÿ1T �

1CA
0B@
T�=C1� T�=C2� T�=C3�eA ÿ1

2
1
2 1eE 0 1 ÿ1eT 1

2 ÿ1
2 0

: �13�

Each row of the resulting matrix (Eq. 13) is regarded
as a row vector (eA, eE, or eT ), which is called a multiplicity
vector. Thus, such a multiplicity vector is meaningful
in the unmatured case (T) as well as in a matured case
(e.g. Td ) described in Ref. [23].

In the next step, we shall calculate the characteristic
subduction concerning each multiplicity vector. For
example, let us consider the eA vector:eA � ÿ1

2;
1
2; 1

ÿ �
; �14�

the respective elements (rational numbers) of which
represent the multiplicities of T�=C1�, T�=C2� and
T�=C3�. Suppose that the # C2 column of the dominant
subduction table for T (Table 1) is, for example, denoted
as �T # C2�:

�T # C2�T � �6C2�=C1�; 2C2�=C1�
� 2C2�=C2�; 2C2�=C1�� : �15�

Then, the characteristic subduction for the A represen-
tation is calculated by multiplying eA with �T # C2�:

eA� �T # C2� � ÿ 1
2� 6C2�=C1�
� 1

2� �2C2�=C1� � 2C2�=C2��
� 2C2�=C1�
� C2�=C2� : �16�

The results for this and the other representations are
collected to give the characteristic subduction table for T
(Table 3).

Since the orbit corresponding to the right-hand side
of Eq. (16) has the size jC2j=jC2j � 1, we use a dummy
variable s1. Thereby, we obtain a characteristic mono-
mial for the A representation to be s1, in which the power
is a unit according to the coe�cient of the right-hand
side of Eq. (16). Thus, the data collected in Table 3 give
the corresponding characteristic monomials, which are
listed to give Table 4 as a characteristic monomial table
for T.

The sums listed in the last side of Eq. (5) are shown in
the bottom row of this table. The collection of the
powers of every s1 variable in Table 4 gives the original
Q-conjugacy character table DT (Eq. 12).

An alternative method of calculating characteristic
monomials uses a dominant USCI table such as Table 2.
For example, the multiplicity vector eA (Eq. 14) treated
by every column in Table 2 gives

s12��ÿ1=2�1 s6��1=2�1 s4�11 � s1 ;

s2��ÿ1=2�2 �s21s22�1=2s2�12 � s1 ;

s4��ÿ1=2�3 s2��1=2�3 �s1s3�1�1 � s1 ;

Table 3. Characteristic subduction table for T

¯ C1 ¯ C2 ¯ C3

A C1(/C1) C2(/C2) C3(/C3)
E 2C1(/C1) 2C2(/C2) C3(/C1) ) C3(/C3)
T 3C1(/C1) 2C2(/C1) ) C2(/C2) C3(/C1)

226



which are equal to the ®rst row of Table 4. The other
rows of Table 4 can be obtained in a similar way.

2.2.2 Example 3

Since the point group Td is matured, its Q-conjugacy
character table is identical to the usual character table.
The character table regarded as a Q-conjugacy character
table gives a set of multiplicity vectors as reported in Eq.
(91) of Ref. [23]:

eA1 � ÿ1
2; 0;

1
2;
1
2;
1
2

ÿ �
;eA2 � 0; 12;ÿ1

2;
1
2;ÿ1

2

ÿ �
;eE � 0; 12; 0;ÿ1

2; 0
ÿ �

;eT 1 � 1
2;ÿ1

2;ÿ1
2; 0;

1
2

ÿ �
;eT 2 � 0; 0; 12; 0;ÿ1

2

ÿ �
:

The # C2 column of the dominant subduction table for
Td (Table 1 of Ref. [24]) is denoted as �Td # C2�:
�Td # C2�T � �6C2�=C1�; 4C2�=C1� � 4C2�=C2�; 6C2�=C1�;

4C2�=C1�; 2C2�=C1� � 2C2�=C2�� : �17�
The characteristic subduction for the T2 representation is
calculated in the light of Eq. (9). Thus, the vector eT 2

multiplied with �Td # C2� giveseT 2 � �Td # C2� � 1
2� 6C2�=C1� ÿ 1

2� �2C2�=C1�
� 2C2�=C2��
� 2C2�=C1� ÿ C2�=C2� ; �18�

which gives a characteristic monomial, sÿ11 s22. The same
monomial can be obtained by using Eq. (11). The set
of USCIs appearing in the corresponding column of
the dominant USCI table for Td (Table 2 of Ref. [24])
gives

s6��1=2�2 � �s21s22�ÿ�1=2� � sÿ11 s22 : �19�
The data calculated by the two methods are collected
to give a characteristic monomial table for Td (Table
5).

The sums listed in the bottom row of this table
are obtained from the inverse markaracter table of
Td .

3 Combinatorial enumeration

Combinatorial enumeration of isomers is formulated to
be a problem in which an appropriate set of ligands are
placed on the positions of a skeleton. Let us consider a
skeleton with n positions. Suppose that the skeleton is
controlled by point group G, which has a non-redundant
set of dominant subgroups,

SCSGG � fG1;G2; . . . ;Gsg : �20�
The positions of the skeleton are characterized by a
permutation representation, P, which a�ords a mar-
karacter represented byeP � �d1; d2; . . . ; ds� : �21�
Let D be the Q-conjugacy character table of G,

DT � �bh1;bh2; . . . ;bhs� ; �22�
in which each of the Q-conjugacy characters is regarded
as a row vector, bh` (` � 1; 2; . . . ; s). Each Q-conjugacy
character bh` corresponds to a Q-conjugacy representa-
tion bH`. Suppose that the permutation representation
P is transformed into a matrix representation. Then, the
latter representation is a linear combination of
Q-conjugacy representations, i.e.

P �
Xs

`�1
a` bH` : �23�

The coe�cients are collected to give a multiplicity
vector,eA � �a1; a2; . . . ; as� ; �24�
which is obtained by solving a set of linear equations,

eA � ePDÿ1 : �25�
The coe�cients obtained here are used to de®ne a cycle
index:

CI�G; sjk� �
Xs

j�1

Xs

i�1
mji

 !Ys

`�1
Z�bh` # Gj; sdjk �
� �a`

 !

�
Xs

j�1
Nj

Ys

`�1

Yr

k�1
s
v�j�
`k

djk

 !a` !

�
Xs

j�1
Nj

Yr

k�1
s
v�j�k
djk

 !
; �26�

Table 4. Characteristic monomial table for T

¯ C1 ¯ C2 ¯ C3

A s1 s1 s1
E s21 s21 sÿ11 s3
T s31 sÿ11 s22 s3
Nj

1
12

1
4

2
3

Table 5. Characteristic monomial table for Td

¯ C1 ¯ CS ¯ CS ¯ C3 ¯ S4

A1 s1 s1 s1 s1 s1
A2 s1 s1 sÿ11 s2 s1 sÿ11 s2
E s21 s21 s2 sÿ11 s3 s2
T1 s31 sÿ11 s22 sÿ11 s22 s3 s1sÿ12 s4
T2 s31 sÿ11 s22 s1s2 s3 sÿ11 s4

Nj
1
24

1
8

1
4

1
3

1
4
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where Nj is given in Eq. (1) and the power v�j�k is
represented by

v�j�k �
Xs

`�1
a`v
�j�
`k : �27�

The cycle index de®ned by Eq. (26) is equivalent to
the one de®ned by an alternative formulation (Sect. 3.3
of Ref. [24]). This fact can be easily proven by tracing
both of the formulations. Moreover, the latter one [24]
was shown to be equivalent to the counterpart described
in de®nition 16.2 in Ref. [19], which was in turn shown
to be equivalent to Polya's cycle index [26].

Suppose that gi of ligands Xi (i � 1; 2; . . . ; v) are
selected from a set of ligands represented by

X � fX1;X2; . . . ;Xvg ; �28�
where we have a partition:

�g� �
Xv

i�1
gi � n : �29�

They are placed on the positions of the skeleton to give
isomers with the formula,

Wg �
Yv

i�1
X gi

i : �30�

The number (Ag) of isomers with the formula (Eq. 30) is
enumerated by the following theorem.

3.1 Theorem 1.9

The number (Ag) of isomers with Wg is calculated by a
generating function,X
�g�

AgWg � CI�G; sjk� ; �31�

where the cycle index (Eq. 27) in the right-hand side is
substituted by ligand inventories,

sdjk �
Xv

`�1
X djk

` : �32�

The following example is concerned with the point
group T. Because the group T is unmatured, its Q-
conjugacy character table is di�erent from its character
table.

3.1.1 Example 4

Let us examine an adamantane skeleton (Fig. 1a) of the
point group T in which a chiral cyclopropane (Fig. 1b) is
substituted on each bridge position (�) in a spiro manner.

We consider an appropriate enantiomer of Fig. 1a in
which we take account of four bridgehead and six bridge
positions. Suppose that these positions are replaced by C
or Si to produce polysila-adamantane derivatives. Our
problem is to count such polysila-adamantane deriva-
tives.

Let us ®rst obtain the inverse of the Q-conjugacy
character table for T. From Eq. (12), we have

Dÿ1T �
1
12

1
12

1
4

1
4

1
4 ÿ1

4
2
3 ÿ1

3 0

0@ 1A : �33�

The method described in Ref. [24] is applied to cat-
egorize the ten positions. The positions are characterized
by a markaracter �10; 2; 1�, which is multiplied by the
inverse (Dÿ1T ), i.e.

�10; 2; 1�Dÿ1T � �2; 1; 2� : �34�
The vector in the right-hand side of Eq. (34) means that
the positions are categorized into 2A� E � 2T .

This result can be obtained alternatively by consid-
ering four bridgehead positions (governed by T�=C3�)
and six bridge positions [governed by T�=C2�] sepa-
rately. Thus, their markaracters are multiplied by the
inverse (Dÿ1T ), i.e.

�4; 0; 1�Dÿ1T � �1; 0; 1� for bridgehead positions ; �35�
�6; 2; 0�Dÿ1T � �1; 1; 1� for bridge positions : �36�
It follows that

T�=C3� � A� T for bridgehead positions ; �37�
T�=C2� � A� E � T for bridge positions ; �38�
where the results shown in the right-hand sides are
summed up to give 2A� E � 2T . By using the data of
Table 4, the cycle index (Eq. 26) for this case is

f � CI�T; sd�
� 1

12�s1�2�s21��s31�2 � 1
4�s1�2�s21��sÿ11 s22�2

� 2
3�s1�2�sÿ11 s3��s3�2

� 1
12s

10
1 � 1

4s
2
1s
4
2 � 2

3s1s
3
3 : �39�

A ligand inventory for this case is represented by

sd � 1� X d ; �40�
which is introduced into Eq. 39 in the light of Theorem
1. Thereby, we obtain

f � 1
12�1� X �10 � 1

4�1� X �2�1� X 2�4

� 2
3�1� X ��1� X 3�3

� 1� 2X � 5X 2 � 14X 3 � 22X 4 � 24X 5

� 22X 6 � 14X 7 � 5X 8 � 2X 9 � X 10 ; �41�
where the coe�cient of the term X x indicates the number
of isomers with x of Si atoms. For illustrating the result

Fig 1

228



corresponding to the term 5X 2 in Eq. (41), Fig. 2 shows
®ve disila-adamantanes with substituents.

For comparison, we next deal with a matured group,
in which its Q-conjugacy character table is identical to
its character table [25]. We revisit the problem of ex-
ample 7 of Ref. [24].

3.1.2 Example 5

According to example 7 of Ref. [24], let us consider
adamantane itself as a skeleton (Td ), in which we take
account of four bridgehead and six bridge positions.
These positions are replaced by C or N to produce
polyaza-adamantane derivatives. Since the group Td is
matured, the Q-conjugacy character table for Td is
identical to the usual character table, as shown in a
matrix form:

DTd �

1CCCCA
0BBBB@
# C1 # C2 # Cs # C3 # S4

A1 1 1 1 1 1
A2 1 1 ÿ1 1 ÿ1
E 2 2 0 ÿ1 0
T1 3 ÿ1 ÿ1 0 1
T2 3 ÿ1 1 0 ÿ1

; �42�

which a�ords its inverse matrix:

Dÿ1Td
�

1
24

1
24

1
12

1
8

1
8

1
8

1
8

1
4 ÿ1

8 ÿ1
8

1
4 ÿ1

4 0 ÿ1
4

1
4

1
3

1
3 ÿ1

3 0 0
1
4 ÿ1

4 0 1
4 ÿ1

4

0BBBB@
1CCCCA : �43�

The ten positions are characterized by a markaracter
�10; 2; 4; 1; 0�, the elements of which indicate the number
of ®xed points for C1, C2, Cs, C3 and S4, respectively.
The method described in Ref. [24] is applied to catego-
rize the ten positions, where the markaracter is multi-
plied by the inverse (Dÿ1Td

), i.e.

�10; 2; 4; 1; 0�Dÿ1Td
� �2; 0; 1; 0; 2� : �44�

It follows that the positions are categorized into
2A1 � E � 2T2.

This result can be obtained alternatively by consid-
ering four bridgehead positions (governed by Td�=C3v�)
and six bridge positions (governed by Td�=C2v�) sepa-
rately [26]:

Td�=C3v� � A1 � T2 for bridgehead positions ; �45�
Td�=C2v� � A1 � E � T2 for bridge positions ; �46�
where the results shown on the right-hand sides are
summed up to give 2A1 � E � 2T2.

By using the data from Table 5, the cycle index
(Eq. 26) for this case is

f � CI�Td ; sd�
� 1

24�s1�2�s21��s31�2 � 1
8�s1�2�s21��sÿ11 s22�2

� 1
4�s1�2�s22��s1s2�2

� 1
3�s1�2�sÿ11 s3��s3�2 � 1

4�s1�2�s2��sÿ11 s4�2
� 1

24s
10
1 � 1

8s
2
1s
4
2 � 1

4s
4
1s
3
2 � 1

3s1s
3
3 � 1

4s2s
2
4 : �47�

The resulting cycle index is identical to the one obtained
in example 7 of Ref. [24].

4 Conclusions

A method of combinatorial enumeration is presented, in
which another de®nition of cycle indices other than
Polya's de®nition [27] is proposed on the basis of several
new concepts:

1. Q-conjugacy character tables and their inverse
matrices,

2. The subduction of Q-conjugacy representations and
characteristic subduction tables,

3. Characteristic monomials and characteristic mono-
mial tables.

Fig 2
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